Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Mol Ther Oncol ; 32(1): 200780, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38596307

RESUMO

Pancreatic cancer will soon become the second cause of death by cancer in Western countries. The main barrier to increase the survival of patients with this disease requires the development of novel and efficient therapeutic strategies that better consider tumor biology. In this context, oncolytic viruses emerge as promising therapeutics. Among them, the fibrotropic minute virus of mice prototype (MVMp) preferentially infects migrating and undifferentiated cells that highly resemble poorly differentiated, basal-like pancreatic tumors showing the worst clinical outcome. We report here that MVMp specifically infects, replicates in, and kills pancreatic cancer cells from murine and human origin with a mesenchymal, basal-like profile, while sparing cancer cells with an epithelial phenotype. Remarkably, MVMp infection, at a dose that does not provoke tumor growth inhibition in athymic mice, shows significant antitumoral effect in immune-competent models; extended mouse survival; and promoted the massive infiltration of tumors by innate, myeloid, and cytotoxic T cells that exhibit a less terminally exhausted phenotype. Collectively, we demonstrate herein for the first time that MVMp is specific and oncolytic for pancreatic tumors with mesenchymal, basal-like profile, paving the way for precision-medicine opportunities for the management of the most aggressive and lethal form of this disease.

2.
Cancer Res ; 84(7): 1013-1028, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38294491

RESUMO

Cytidine deaminase (CDA) functions in the pyrimidine salvage pathway for DNA and RNA syntheses and has been shown to protect cancer cells from deoxycytidine-based chemotherapies. In this study, we observed that CDA was overexpressed in pancreatic adenocarcinoma from patients at baseline and was essential for experimental tumor growth. Mechanistic investigations revealed that CDA localized to replication forks where it increased replication speed, improved replication fork restart efficiency, reduced endogenous replication stress, minimized DNA breaks, and regulated genetic stability during DNA replication. In cellular pancreatic cancer models, high CDA expression correlated with resistance to DNA-damaging agents. Silencing CDA in patient-derived primary cultures in vitro and in orthotopic xenografts in vivo increased replication stress and sensitized pancreatic adenocarcinoma cells to oxaliplatin. This study sheds light on the role of CDA in pancreatic adenocarcinoma, offering insights into how this tumor type modulates replication stress. These findings suggest that CDA expression could potentially predict therapeutic efficacy and that targeting CDA induces intolerable levels of replication stress in cancer cells, particularly when combined with DNA-targeted therapies. SIGNIFICANCE: Cytidine deaminase reduces replication stress and regulates DNA replication to confer resistance to DNA-damaging drugs in pancreatic cancer, unveiling a molecular vulnerability that could enhance treatment response.


Assuntos
Adenocarcinoma , Citidina Desaminase , Inibidores da Síntese de Ácido Nucleico , Neoplasias Pancreáticas , Humanos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Citidina Desaminase/metabolismo , DNA , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Replicação do DNA , Inibidores da Síntese de Ácido Nucleico/uso terapêutico
3.
NAR Cancer ; 5(2): zcad011, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36915289

RESUMO

The exonuclease domain of DNA polymerases epsilon's catalytic subunit (POLE) removes misincorporated nucleotides, called proofreading. POLE-exonuclease mutations cause colorectal- and endometrial cancers with an extreme burden of single nucleotide substitutions. We recently reported that particularly the hereditary POLE exonuclease mutation N363K predisposes in addition to aggressive giant cell glioblastomas. We knocked-in this mutation homozygously into human cell lines and compared its properties to knock-ins of the likewise hereditary POLE L424V mutation and to a complete proofreading-inactivating mutation (exo-null). We found that N363K cells have higher mutation rates as both L424V- or exo-null mutant cells. In contrast to L424V cells, N363K cells expose a growth defect, replication stress and DNA damage. In non-transformed cells, these burdens lead to aneuploidy but macroscopically normal nuclei. In contrast, transformed N363K cells phenocopy the enlarged and disorganized nuclei of giant cell glioblastomas. Taken together, our data characterize a POLE exonuclease domain mutant that not only causes single nucleotide hypermutation, but in addition DNA damage and chromosome instability, leading to an extended tumor spectrum. Our results expand the understanding of the polymerase exonuclease domain and suggest that an assessment of both the mutational potential and the genetic instability might refine classification and treatment of POLE-mutated tumors.

4.
Cancers (Basel) ; 13(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34439212

RESUMO

Triple-negative breast cancer (TNBC) is notoriously aggressive with a high metastatic potential, and targeted therapies are lacking. Using transcriptomic and histologic analysis of TNBC samples, we found that a high expression of thrombospondin-1 (TSP1), a potent endogenous inhibitor of angiogenesis and an activator of latent transforming growth factor beta (TGF-ß), is associated with (i) gene signatures of epithelial-mesenchymal transition and TGF-ß signaling, (ii) metastasis and (iii) a reduced survival in TNBC patients. In contrast, in tumors expressing low levels of TSP1, gene signatures of interferon gamma (IFN-γ) signaling and lymphocyte activation were enriched. In TNBC biopsies, TSP1 expression inversely correlated with the CD8+ tumor-infiltrating lymphocytes (TILs) content. In the 4T1 metastatic mouse model of TNBC, TSP1 silencing did not affect primary tumor development but, strikingly, impaired metastasis in immunocompetent but not in immunodeficient nude mice. Moreover, TSP1 knockdown increased tumor vascularization and T lymphocyte infiltration and decreased TGF-ß activation in immunocompetent mice. Noteworthy was the finding that TSP1 knockdown increased CD8+ TILs and their programmed cell death 1 (PD-1) expression and sensitized 4T1 tumors to anti-PD-1 therapy. TSP1 inhibition might thus represent an innovative targeted approach to impair TGF-ß activation and breast cancer cell metastasis and improve lymphocyte infiltration in tumors, and immunotherapy efficacy in TNBC.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA